Electron-hadron separation in electromagnetic calorimeters: a comparison

Iván Esteban Muñoz

University of the Basque Country

August 21, 2014

Purpose

- Identification: scattered electron vs negatively charged hadrons in DIS
- Tracker
- Electromagnetic calorimeter

Purpose

Figure 1 : Lead glass calorimeter, $15 \, GeV \times 250 \, GeV$

Technical details

- PEPSI e-p polarised in parallel 15 GeV x 250 GeV
- Calorimeter smearing models for electromagnetic particles:

Lead-tungstate:
$$\begin{cases} \Delta E/E = 0.69\% + 1.78\%/\sqrt{E} \, (\eta < -2) \\ \text{Tungsten powder performance} \, (\eta > -2) \end{cases}$$

- Lead glass: $\begin{cases} \Delta E/E = 0.76\% + 5.95\%/\sqrt{E} & (\eta < -1) \\ \text{Tungsten powder performance} & (\eta > -1) \end{cases}$
- Tungsten powder: $\Delta E/E = 1.4\% + 9.7\%/\sqrt{E}$
- Calorimeter smearing model for hadrons:

$$\mu/E = 40\%$$
 $\sigma/E = 10\%$

Technical details

Momentum resolution

$ \eta $	$\Delta p/p$
[0.00, 0.25]	0.69%/p + 0.14% + 0.041%p
[0.25, 0.75]	0.49%/p + 0.21% + 0.030%p
[0.75, 1.25]	-0.013%/p + 0.40% + 0.014%p
[1.25, 1.75]	0.38%/p + 0.68% + 0.016%p
[1.75, 2.25]	0.22%/p + 0.61% + 0.020%p
[2.25, 2.75]	0.82%/p + 0.79% + 0.019%p
[2.75, 3.00]	2.0%/p + 1.2% + 0.061%p

Kynematics

- How are electrons and negatively charged hadrons distributed in momentum space?
- Which rapidities are interesting?

Figure 2: Electron and negative hadron distribution in momentum space

Figure 3 : Q^2 vs η of the scattered electron

Results General results

Purity
$$\equiv 1 - \frac{\#had}{\#scat. e^-}$$
 ($\pm 3\sigma$)

- lacksquare σ for scattered electron E/p
- Momentum dependance
- Rapidity bins

Figure 4: Purity comparison $(\pm 3\sigma)$

General results: width for the electron signal

Figure 5 : σ comparison for the electron signal

Results General results

- Graphical visualization
- Overlap
- Momentum and rapidity bins

General results: graphical visualization

Figure 6 : Overlap for different p and η bins (tungsten powder)

Results Particular results

- Alternative to $\pm 3\sigma$, fixed left cut \Rightarrow error
- Efficiency $\equiv 1 \frac{\#scat. e^-}{total \ scat. e^-}$

Particular results: 0.7 cut

Figure 7: Purity for a cut at E/p = 0.7

Figure 8 : Efficiency for a cut at E/p = 0.7

Particular results: 0.8 cut

Figure 9: Purity for a cut at E/p = 0.8

Figure 10 : Efficiency for a cut at E/p=0.8

Particular results: 0.9 cut

Figure 11 : Purity for a cut at E/p = 0.9

Figure 12: Efficiency for a cut at E/p = 0.9

Results Particular results

- Original separation in momentum space between electrons and hadrons: high purities by binning
- Still some momentum migration
- Graphical visualization of both purities
- lacktriangle Momentum *relative migration* because of smearing: $p_{rec}-p_{sim}^e$

Particular results: momentum migration

Figure 13: Momentum migration for the tungsten powder calorimeter

Particular results: momentum migration projection

Figure 14: Momentum migration projection for the tungsten powder calorimeter

Conclusions

- High purity, regardless of the cal
- Good resolution in momentum space
- May achieve high purities at low momenta with a restrictive cut

Acknowledgements

Elke-Caroline Aschenauer

Alexander Kiselev

Thomas Burton

Figure 15: Lead tungstate calorimeter, 15 GeVx250 GeV

Figure 16: Tungsten powder calorimeter, 15 GeVx250 GeV

Figure 17 : Overlap for different p and η bins (lead tungstate)

Figure 18 : Overlap for different p and η bins (lead glass)

Backup

Lead tungstate momentum migration

Figure 19: Momentum migration for the lead tungstate calorimeter

Backup Lead glass momentum migration

Figure 20: Momentum migration for the lead glass calorimeter

Backup

Lead tungstate momentum migration projection

Figure 21: Momentum migration projection for the lead tungstate calorimeter

Backup

Lead glass momentum migration projection

Figure 22 : Momentum migration projection for the lead glass calorimeter